In the adjoining figure, ABC is an isosceles right-
angled triangle and DEFG is a rectangle
AD = AE =3 cm and DB = EC = 4 cm, find the area of
the shaded region
Answers
Answer:
Step-by-step explanation:
In ∆ADE, applying Pythagoras theorem, we get
DE² = AD² + AE²
⇒ DE = √[3² + 3²]
⇒ DE = 3√2 cm
∴ DE = GF = 3√2 cm ……. [opposite sides of the rectangle are congruent] ….. (i)
We know from the figure that,
AB = AD + DB = 3 + 4 = 7 cm
AC = AE + EC = 3 + 4 = 7 cm
In ∆ABC, applying Pythagoras theorem, we get
BC² = AB² + AC²
⇒ BC = √ [7² + 7²]
⇒ BC = 7√2 cm …. (ii)
Step 2:
In ∆DBG and ∆EFC, we have
DB = EC ….. [given]
DG = EF …… [opposite side of the rectangle are congruent]
∠DGB = ∠EFC = 90° …… [angles of rectangle is a right angle]
∴ By SAS congruence, ∆DBG ≅ ∆EFC
∴ By CPCT, BG = FC ….. (iii)
From (i), (ii) & (iii), we get
BC = BG + GF + FC
⇒ BG + FC = 7√2 - 3√2
⇒ 2 BG = 4√2
⇒ BG = 2√2 cm
∴ BG = FC = 2√2 cm …. (iv)
Step 3:
Now, in ∆EFC, applying Pythagoras theorem, we get
EC² = EF² + FC²
⇒ 4² = EF² + (2√2)² ……. [from (iv)]
⇒ EF = √ [16 – 8]
⇒ EF = 2√2
∴ EF = DG = 2√2 cm …… (v)
Thus,
The area of the shaded portion i.e., area of the rectangle DEFG is,
= length * breadth
= DE * EF
= 3√2 * 2√2 ….. [substituting from (i) & (v)]
= 3 * 2 * 2
= 12 cm²
-----------------------------------------------------------------------------/