Math, asked by amritpal438, 9 months ago

In the adjoining figure ABCD, diagonals intersect at O. If angle OAB=30* find angle ACB, ABO, COD, BOC​

Answers

Answered by sumit1234570
0

Answer:

In △ABC,

⇒ ∠CAB+∠ABC+∠ACB=180

o

.

⇒ 30

o

+90

o

+∠ACB=180

o

.

⇒ 120

o

+∠ACB=180

o

.

∴ ∠ACB=60

o

We know that, diagonals of rectangle are equal and bisect each other equally.

∴ AO=OC=BO=OD

In △ABO,

⇒ AO=BO

⇒ ∠OAB=∠ABO [ Angle opposite to equal side are also equal ]

⇒ ∠OAB=∠ABO=30

o

⇒ ∠OAB+∠ABO+∠BOA=180

o

⇒ 30

o

+30

o

+∠BOA=180

o

.

⇒ ∠BOA=120

o

.

⇒ ∠BOA=∠COD [ Vertically opposite angle ]

∴ ∠COD=120

o

⇒ ∠COD+∠BOC=180

o

[ Linear pair ]

⇒ 120

o

+∠BOC=180

o

∴ ∠BOC=60

o

.

⇒ ∠ACB=60

o

,∠ABO=30

o

,∠COD=120

o

and ∠BOC=60

o

.

Answered by XxArmyGirlxX
1

Answer:

In △ABC,

⇒ ∠CAB+∠ABC+∠ACB=180⁰.

⇒ 30⁰ +90⁰+∠ACB=180⁰.

⇒ 120⁰ +∠ACB=180⁰.

∴ ∠ACB=60⁰

We know that, diagonals of rectangle are equal and bisect each other equally.

∴ AO=OC=BO=OD

In △ABO,

⇒ AO=BO

⇒ ∠OAB=∠ABO [ Angle opposite to equal side are also equal ]

⇒ ∠OAB=∠ABO=30⁰

⇒ ∠OAB+∠ABO+∠BOA=180 ⁰

⇒ 30⁰+30⁰+∠BOA=180⁰.

⇒ ∠BOA=120⁰.

⇒ ∠BOA=∠COD [ Vertically opposite angle ]

∴ ∠COD=120⁰

⇒ ∠COD+∠BOC=180⁰ [ Linear pair ]

⇒ 120⁰+∠BOC=180⁰

∴ ∠BOC=60⁰.

⇒∠ACB=60⁰,∠ABO=300⁰,∠COD=120⁰ and ∠BOC=60⁰.

Similar questions