in the adjoining figure ABCD is a parallelogram and diagonals intersect at O find angle C A D,angle ACD and angle ADC.
Answers
a)∠CAD = 66°
b)∠ACD = 38°
c)∠ADC= 76°
Step-by-step explanation:
Given,ABCD is a parallelogram.
By considiring the attached figure,
In ΔBCD,
∠CDB + ∠CBD + ∠BCD = 180° [Angle sum property of triangle]
∠BDC = 30°, ∠CBD = 46°
So,30° + 46° +∠BCD = 180°
⇒76° + ∠BCD = 180°
⇒∠BCD = 180 - 76
= 104°
here,ACD is a straight line
⇒∠AOD + ∠COD = 180° [By linear pair property]
⇒68°+∠COD =180°
⇒∠COD = 180°-68°
= 112°
Now,In ΔCOD,
∠ODC +∠OCD +∠COD =180° [Angle sum property of a triangle]
30°+∠OCD + 112° =180°
142° + ∠OCD =180°
∠OCD = 180°-142°
=38°
⇒∠ACD = 38°
In ΔBOC,
∠CBO+∠BCO+∠BOC =180° [Angle sum property of a triangle]
∠AOD = ∠BOC =68°(Vertically opposite Angles)
46°+∠BCO+68° =180°
114°+∠BCO = 180°
∠BCO = 180°-114°
= 66°
Here ∠BCO = ∠CAD [Alernate interior Angles]
⇒∠CAD = 66°
Now,In ΔΔADC,
∠ADC+∠CAD+∠ACD = 180° [Angle sum property of a triangle]
∠ADC + 66°+ 38°= 180°
∠ADC+ 104° = 180°
∠ADC = 180°-104°
= 76°
a)∠CAD = 66°
b)∠ACD = 38°
c)∠ADC= 76°
*Refer the attached figure.
Answer:
hey mate please check the pictures that are given you will find your answer there and if any problem then ask me in comment section.
Thank you.