In the adjoining figure, ABCD is a parallelogram and diagonals intersect at point O. Find
(1) Angle CAD
(2) Angle ACD
(3) Angle ADC
Answers
Answer:
in the adjoining figure ABCD is a parallelogram and diagonals intersect at O find angle C A D,angle ACD and angle ADC.. 2. See answers.
Answer:
Given ABCD is a parallelogram.
By considiring the attached figure,
In triangle BCD,
Angle CDB+Angle CBD+angle BCD= 180° [ angle sum property of triangle]
angle BDC= 30°,angle CBD=46°
so, 30°+46°+ angle BCD =180°
76° + angle BCD = 180°
angle BCD = 180°-76°
= 104°
Here, ACD is a straight line
angle AOD+ angle COD = 180° [ By linear pair property]
68°+ angle COD= 180°
angle COD= 180°-68°
= 112°
Now, In Triangle COD,
angle ODC+ angle OCD+angle COD= 180° [ Angle sum property of a Triangle]
30°+ angle OCD+112°=180°
142°+angle OCD=180°
angle OCD=180°-142°
= 38°
angle ACD= 38°
In Triangle BOC,
angle CBO+angle BCO+angle BOC=180° [ angle sum property of a Triangle]
angle AOD= angle BOC=68°(Vertically opposite angle)
46°+angle BCO+68°=180°
114°+ angle BCO=180°
angle BCO=180°-114°
= 66°
Here angle BCO=angle CAD[ Alernate interior angle]
angle CAD=66°
Now In triangle ADC,
angle ADC+angle CAD+ angle ACD=180°[ Angle sum property of a triangle]
angle ADC+66°+38°=180°
angle ADC= 180°-38°
= 76°
a) Angle CAD=66°
b)Angle ACD=38°
c) Angle ADC=76°