Math, asked by brainly2019, 1 year ago

in the adjoining figure ABCD is a parallelogram. through the midpoint M of the side CD, a line is drawn which cuts diagonal AC produced at E . prove that EL=2BL

Answers

Answered by r5134497
6

Hence proved, EL=2BL

Step-by-step explanation:

Solution given below

Attachments:
Answered by stefangonzalez246
3

Proved that EL = 2BL.

Given

To prove that, EL = 2BL.

From the figure,    

M is the mid-point of CD.

In ΔBMC and ΔEMD, MC = MD.

                  ∠CMD = ∠EMD   ( They are vertically opposite angles )

                  ∠MBC = ∠MED   ( They are alternate angles )

     Hence, ΔBMC = ΔEMD   ( AAS - Angle Angle Side congruence )

Where, ABCD is a parallelogram

                  BC = DE ---> ( 1 )

                  AD = BC ---> ( 2 )

Adding them,  AD + DE = BC + BC

                                 AE = 2 BC           ( AD + DE = AE )

                                 AE = 2 BC ---> ( 3 )

In ΔAEL and ΔCBL,

                               ∠ALE = ∠CLB  ( They are vertically opposite angles )

                               ∠EAL = ∠BCL  ( They are alternate angles )

                               Δ AEL ≅ ΔCBL ( By AA - Angle Angle similarity )

                                   EL / BL = AE / BC

                                   EL / BL = 2BC / BC   ( AE = 2BC )

                                   EL / BL = 2

                                   EL = 2BL

Therefore, it has been proved that EL = 2BL.        

To learn more...

1. brainly.in/question/618927                

2. brainly.in/question/1538939

Attachments:
Similar questions