Math, asked by AshwitaPoddar, 3 months ago

In the adjoining figure ABCD is a rectangle with < OAB = 30° find <ABO and <COD​

Attachments:

Answers

Answered by sayonikar4
0

Step-by-step explanation:

In △ABC,

⇒ ∠CAB+∠ABC+∠ACB=180

o

.

⇒ 30

o

+90

o

+∠ACB=180

o

.

⇒ 120

o

+∠ACB=180

o

.

∴ ∠ACB=60

o

We know that, diagonals of rectangle are equal and bisect each other equally.

∴ AO=OC=BO=OD

In △ABO,

⇒ AO=BO

⇒ ∠OAB=∠ABO [ Angle opposite to equal side are also equal ]

⇒ ∠OAB=∠ABO=30

o

⇒ ∠OAB+∠ABO+∠BOA=180

o

⇒ 30

o

+30

o

+∠BOA=180

o

.

⇒ ∠BOA=120

o

.

⇒ ∠BOA=∠COD [ Vertically opposite angle ]

∴ ∠COD=120

o

⇒ ∠COD+∠BOC=180

o

[ Linear pair ]

⇒ 120

o

+∠BOC=180

o

∴ ∠BOC=60

o

.

⇒ ∠ACB=60

o

,∠ABO=30

o

,∠COD=120

o

and ∠BOC=60

o

.

Wish this helps you please mark me brainliest ☺️

Answered by charan555
2

Step-by-step explanation:

<OAB = < ABO = 30 ° OPPOSITE ANGLES

<COD = <AOB

<AOB = 180 - <OAB + < ABO

<AOB = 180 - 30 + 30 = 120

<COD = 120°

Similar questions