In the adjoining figure, AC = BD. AE - FB and ACF - BDE 90° Prove that CF =DE AC equal DB
Answers
Answered by
2
Answer:
ANSWER:
Given: In the given figure, AB || CD and O is the midpoint of AD.
To prove:
(i) ΔAOB ≅ ΔDOC.
(ii) O is the midpoint of BC.
Proof:
(i) In ΔAOB and ΔDOC,
∠BAO = ∠CDO (Alternate interior angles, AB || CD)
AO = DO (Given, O is the midpoint of AD)
∠AOB = ∠DOC (Vertically opposite angles)
∴ By ASA congruence criteria,
ΔAOB ≅ ΔDOC
(ii) ∵ ΔAOB ≅ ΔDOC [From (i)]
∴ BO = CO (CPCT)
Hence, O is the midpoint of BC.
PLEASE MARK ME AS BRAINLIST
Similar questions
Computer Science,
9 days ago
English,
9 days ago
Social Sciences,
18 days ago
Math,
18 days ago
Chemistry,
8 months ago
History,
8 months ago
Science,
8 months ago