In the adjoining figure, AE ||BC. With the help of the given information find the value of x and y.
Answers
Given :-
- In the adjoining figure, AE ||BC.
To Find :-
- find the value of x and y. ?
Solution :-
in ∆ABC ,
→ ∠A + ∠B + ∠C = 180° (Angle sum Property).
Putting all given values from diagram we get,
→ (2x + y) + (y - 11°) + (x + 11°) = 180°
→ 2x + y + y + x = 180°
→ 3x + 2y = 180° ------------- Eqn.(1)
Now, we have given that, AE || BC.
So,
→ ∠DAE = ∠ABC { Corresponding angles. }
Putting values again we get,
→ x + 19° = y - 11°
→ y - x = 19° + 11°
→ y - x = 30°
Multiply both sides by 2,
→ 2y - 2x = 60° ------------------ Eqn.(2)
Now, Subtracting Eqn.(2) from Eqn.(1) , we get,
→ (3x + 2y) - (2y - 2x) = 180° - 60°
→ 3x + 2x + 2y - 2y = 120°
→ 5x = 120°
Dividing both sides by 5,
→ x = 24° .(Ans.)
Putting value of x now,
→ y - x = 30°
→ y - 24° = 30°
→ y = 30° + 24°
→ y = 54°. (Ans.)
Hence, Value of x is 24° and value of y is 54°.
Learn More :-
ਪ੍ਰ:8.ਦਿੱਤੇ ਗਏ ਚਿੱਤਰ ਵਿੱਚ,∠4 =……………… In given figure, ∠4 =……………… दिए गए चित्र में, ∠4 =……………… *
https://brainly.in/question/23682233
Answer:
see I have given you proper answer ok