In the adjoining figure, AP \\RD and ABCD is a parallelogram, prove that area(PQRDB)= area(PQRCA).
Answers
Answer:
Draw PR
As ABCD is a parallelogram, AB = CD ------------------> (I)
Given, AP || RD ⇒ AP || RC
Now, AP + RC = AB + BP + RC = BP + CD + RC = BP + RD
Let AP + RC = BP + RD = a
The trapeziums APRC and DRPB have the same height
Let the common height be h
Area of trapezium = (1/2) x Height x (Sum of parallel sides)
Now,
ar(PQRDB)
= ar(ΔPQR) + ar(DRPB)
= ar(ΔPQR) + x h x (BP + RD)
= ar(ΔPQR) + x h x a
And,
ar(PQRCA)
= ar(ΔPQR) + ar(APRC)
= ar(ΔPQR) + x h x (AP + RC)
= ar(ΔPQR) + x h x a
∵ ar(PQRDB) = ar(ΔPQR) + x h x a and ar(PQRCA) = ar(ΔPQR) + x h x a,
ar(PQRDB) = ar(PQRCB)
Hence, proved
Hope it helps!!! Please mark Brainliest!!!