Math, asked by ur5555555, 2 months ago

In the adjoining figure, if <ACB = <BAD and AD perp BC, AC = 15 cm , AB = 20 cm and BC = 25 cm, then find the length of AD ?​

Attachments:

Answers

Answered by Steph0303
54

Given:

  • ∠ACB = ∠BAD
  • AD ⊥ BC
  • AC = 15 cm, AB = 20 cm, BC = 25 cm

To Find:

  • AD = ?

Solution:

Consider Δ ACD and Δ BAD

⇒ ∠ ACD = ∠ BAD ( A ) (Given in the question)

⇒ ∠ ADC = ∠ BDA ( A ) (90°)

Hence by AA similarity criterion,

Δ ADC ~ Δ BDA

Hence the corresponding sides are proportional. Hence we get:

\boxed{ \bf{\dfrac{AC}{AB} = \dfrac{AD}{BD} = \dfrac{CD}{AD} }}

Let's first consider (AC/AB = AD/BD)

\implies \dfrac{15}{20} = \dfrac{AD}{BD}\\\\\\\implies \dfrac{3}{4} = \dfrac{AD}{BD}\\\\\\\implies \dfrac{3\:BD}{4} = AD \:\:...(1)

Now consider the second case (AC/AB = CD/AD)

\implies \dfrac{15}{20} = \dfrac{CD}{AD}\\\\\\\implies \dfrac{3}{4} = \dfrac{CD}{AD}\\\\\\\implies AD = \dfrac{4\:CD}{3} \:\: ...(2)

Now we know that:

⇒ BC = CD + BD

⇒ 25 = CD + BD

⇒ BD = 25 - CD ...(3)

Substituting (3) in (1) we get:

\implies \dfrac{ 3(25 - CD)}{4} = AD\\\\\\\implies AD = \dfrac{75 - 3\:CD}{4} \:\: ...(4)

Now since the LHS of (4) and (2) are equal, we equate the RHS. Hence we get:

\implies \dfrac{ 75 - 3\:CD}{4} = \dfrac{4\:CD}{3}\\\\\\\implies \dfrac{ 75 - 3\:CD}{4} - \dfrac{4\:CD}{3} = 0\\\\\\\text{Taking LCM we get:}\\\\\\\implies \dfrac{3(75 - 3\:CD) - 4(4\:CD)}{3 \times 4} = 0\\\\\\\implies \dfrac{225 - 9\:CD - 16\:CD}{12} = 0\\\\\\\implies 225 - 25\:CD = 0\\\\\implies 225 = 25\:CD\\\\\implies CD = \dfrac{225}{25} \\\\\\\implies \boxed{CD = 9}

Substituting Value of CD in (2) we get:

\implies AD = \dfrac{ 4 \:CD}{3}\\\\\\\implies AD = \dfrac{ 4 \times 9}{3}\\\\\\\implies AD = \dfrac{36}{3}\\\\\\\implies \boxed{ \bf{ AD = 12\:cm}}

Hence the length of AD is equal to 12 cm.

Answered by BrainlyKilIer
73

\Large{\underbrace{\underline{\bf{QUESTION\:}}}}: \\

In the attachment figure, if \rm{\angle{ACB}\:=\:\angle{BAD}} and \rm{AD\:\perp\:BC}, AC = 15 cm, AB = 20 cm and BC = 25 cm, then find the length of AD?

{\bf{Given\::}} \\

  • \bf{\angle{ACB}\:=\:\angle{BAD}}

  • \rm{AD\:\perp\:BC}

  • AC = 15 cm

  • AB = 20 cm

  • BC = 25 cm

 \\ {\bf{To\: Find\::}} \\

  • The length of AD.

 \\ {\bf{Solution\::}} \\

In ∆ABD & ∆CAD,

⠀⠀\bf{1)\:\angle{ACD}\:=\:\angle{BAD}}\:{\left[\:\because\:\angle{ACB}\:=\:\angle{ACD}\right]}

⠀⠀❷ \rm{AD\:\perp\:BC} \bf{\angle{ADB}\:=\:\angle{CDA}}

Hence,

⠀⠀∆ABD \cong CAD[By A-A criterion]

\therefore\:\bf{\dfrac{AB}{CA}\:=\:\dfrac{BD}{AD}\:=\:\dfrac{AD}{CD}\:}---(1) \\

Now,

We take,

:\implies\:\tt{\dfrac{BD}{AD}\:=\:\dfrac{AD}{CD}\:} \\

:\implies\:\tt{(AD)^2\:=\:BD\times{CD}\:} \\

As we know that,

  • BD = BC - CD

:\implies\:\tt{(AD)^2\:=\:(BC\:-\:CD)\times{CD}\:} \\

:\implies\:\tt{(AD)^2\:=\:BC\times{CD}\:-\:(CD)^2\:} \\

:\implies\:\tt{(AD)^2\:+\:(CD)^2\:=\:BC\times{CD}\:} \\

In ∆CAD,

  • AD² + CD² = AC²

:\implies\:\tt{(AC)^2\:=\:BC\times{CD}\:} \\

:\implies\:\tt{CD\:=\:\dfrac{(AC)^2}{BC}\:} \\

:\implies\:\tt{CD\:=\:\dfrac{(15)^2}{25}\:} \\

:\implies\:\tt{CD\:=\:\dfrac{225}{25}\:} \\

:\implies\:\bf{CD\:=\:9\:cm} \\

From equation (1), we take

:\implies\:\tt{\dfrac{AB}{CA}\:=\:\dfrac{AD}{CD}\:} \\

:\implies\:\tt{AD\:=\:\dfrac{AB}{CA}\times{CD}\:} \\

:\implies\:\tt{AD\:=\:\dfrac{20}{15}\times{9}\:} \\

:\implies\:\tt{AD\:=\:\dfrac{4}{3}\times{9}\:} \\

:\implies\:\tt{AD\:=\:4\times{3}\:} \\

:\implies\:\bf\pink{AD\:=\:12\:cm} \\

∴ The length of AD is 12 cm.

Similar questions