Math, asked by MohdArbaz69, 2 months ago

In the adjoining figure, Lines AB || CD find the value of x and y.​

Attachments:

Answers

Answered by 12thpáìn
9

Given

  • AB || CD
  • ∠APQ = 2x+10°
  • ∠QPR = x-5°
  • ∠DQP = 2y-10°
  • ∠CRP = x+y+15°

To Find

  • Value of x and y

Solution

_____________________

We know that

  • If a transversal intersects two parallel lines then each pair of alternate interior angles are equal.

Therefore, ∠APQ = ∠DQP

And ∠APQ+∠QPR = ∠CRP

{~~~~\implies \sf  2x +10 = 2y -10 }

{~~~~\implies \sf  2x  - 2y+10  + 10= 0 }

{~~~~\implies \sf  2x  - 2y+20= 0 \:  \:  \:  \:  \:  -  -  -  - (1) }

Or

{~~~~~~~~~\implies \sf  (2x + 10) + (x - 5) = x + y + 15 }

{~~~~~~~~~\implies \sf  2x + 10+ x - 5 - x - y - 15= 0 }

{~~~~~~~~~\implies \sf  2x - y - 10= 0 \:  \:  \:  \:  \:  -  -  -  - (2) }

  • Subtracting equation 2 from 1.

{~~~~\implies \sf  2x  - 2y+20 - ( 2x - y - 10) = 0}

{~~~~\implies \sf   \cancel{2x}  - 2y+20  - \cancel{2x}  +  y  +  10 = 0}

{~~~~\implies \sf     - y+30= 0}

{~~~~\implies \sf     - y=  - 30}

{~~~~\implies \sf      y=   30  }

  • Putting x in Equation 1

{~~~~\implies \sf  2x  - 2y+20= 0  }

{~~~~\implies \sf  2x  - 2 \times 30+20= 0  }

{~~~~\implies \sf  2x   - 60+20= 0  }

{~~~~\implies \sf  2x   - 40= 0  }

{~~~~\implies \sf  2x   = 40 }

{~~~~\implies \sf  x   = 20 }

 \mathcal{Hence \:  the \:  value \:  of  \:\red{x} \:  and \:  \pink{ y }  \: is  \:  \red{20}   \: and   \: \pink{ 30 }\:  respectively} \\  \\  \\

Similar questions