Math, asked by ss96662, 1 year ago

In the adjoining figure ,O is the centre of circle of radius of 5cm OP perpendicular to AB, OQ PERPENDICULAR to CD and AB parallel to CD if AB=8 and CD=6cm ,findPQ

Answers

Answered by navyarajiv
45
hi,
check out the picture for your answer
mark me as an brainliest thanks
Attachments:

ss96662: NICE
navyarajiv: :)
Answered by vibhanshu8441
1

Step-by-step explanation:

Given- AB=6 cm and CD=8 cm are the chords of a circle of radius 5 cm with centre at O.

OP⊥AB at M and OQ⊥CD at N.

To find out - the length of PQ=?

Solution-

We join OC and OA.

So, OC=OA=5 cm, since OC and OA are radii.

ΔOAP and ΔOCQ are right ones, since OP⊥AB at P and OQ⊥CD at Q.

Now AP=21AB=21×6 cm =3 cm and CQ=21CD=21×8 cm =4 cm, since the perpendicular from the centre of a circle to a chord bisects the latter.

So, in ΔOAP, by Pythagoras theorem, we have

OP=OA2−AP2=52−42 cm =3 cm

Again in ΔOCQ, by Pythagoras theorem, we have

OQ=OC2−CQ2=52−32 cm =4 cm.

Attachments:
Similar questions