Math, asked by mahatosagarika, 8 months ago

In the adjoining figure the area enclosed between the concentric circles is 770 cm square. lf the radius of the outer circle is 21 cm , calculate the radius of inner circle.​

Answers

Answered by mddilshad11ab
134

\sf\large\underline{Given:}

\rm{\implies Difference\:area\:_{(outer\:circle-inner\:circle)}=770cm^2}

\rm{\implies Outer\:_{(radius\:of\:circle)}=21cm}

\sf\large\underline{To\: Find:}

\rm{\implies Inner\:_{(radius\:of\:circle)}=?}

\sf\large\underline{Solution:}

\tt{\implies Let,\:the\: inner\: radius\:of\:circle\:be\:r}

\sf\large\underline{Formula\:used:}

\tt{\implies Area\:_{(circle)}=\pi\:r^2}

\tt{\implies Outer\:_{(area)}-Inner\:_{(area)}=Difference\:_{(area)}}

\tt{\implies \dfrac{22}{7}\times\:21^2-\dfrac{22}{7}\times\:r^2=770}

  • we take common here 22/7 here]

\tt{\implies \frac{22}{7}\bigg(21^2-r^2\bigg)=770}

\tt{\implies 441-r^2=770\div\dfrac{22}{7}}

\tt{\implies 441-r^2=770\times\dfrac{7}{22}}

\tt{\implies 441-r^2=245}

\tt{\implies -r^2=245-441}

\tt{\implies -r^2=-196}

\tt{\implies r^2=196}

\tt{\implies r=\sqrt{196}=14cm}

\bf\large{Hence,}

\rm{\implies Inner\:_{(radius\:of\:circle)}=14cm}

Attachments:
Answered by nigaranjum18
7

Solution:-

As we know that,

Area of circle=πr²

=>22/7×21²-22/7r²=770

22/7(21²-r²)=770

441-r²=770×7/22

441-r²=245

-r²=245-441

-r²=-196

r=14

therefore, inner radius of circle=14cm

Similar questions