Math, asked by mahatosagarika, 10 months ago

In the adjoining figure the area enclosed between the concentric circles is 770 cm square. lf the radius of the outer circle is 21 cm , calculate the radius of inner circle.​

Answers

Answered by mddilshad11ab
134

\sf\large\underline{Given:}

\rm{\implies Difference\:area\:_{(outer\:circle-inner\:circle)}=770cm^2}

\rm{\implies Outer\:_{(radius\:of\:circle)}=21cm}

\sf\large\underline{To\: Find:}

\rm{\implies Inner\:_{(radius\:of\:circle)}=?}

\sf\large\underline{Solution:}

\tt{\implies Let,\:the\: inner\: radius\:of\:circle\:be\:r}

\sf\large\underline{Formula\:used:}

\tt{\implies Area\:_{(circle)}=\pi\:r^2}

\tt{\implies Outer\:_{(area)}-Inner\:_{(area)}=Difference\:_{(area)}}

\tt{\implies \dfrac{22}{7}\times\:21^2-\dfrac{22}{7}\times\:r^2=770}

  • we take common here 22/7 here]

\tt{\implies \frac{22}{7}\bigg(21^2-r^2\bigg)=770}

\tt{\implies 441-r^2=770\div\dfrac{22}{7}}

\tt{\implies 441-r^2=770\times\dfrac{7}{22}}

\tt{\implies 441-r^2=245}

\tt{\implies -r^2=245-441}

\tt{\implies -r^2=-196}

\tt{\implies r^2=196}

\tt{\implies r=\sqrt{196}=14cm}

\bf\large{Hence,}

\rm{\implies Inner\:_{(radius\:of\:circle)}=14cm}

Attachments:
Answered by nigaranjum18
7

Solution:-

As we know that,

Area of circle=πr²

=>22/7×21²-22/7r²=770

22/7(21²-r²)=770

441-r²=770×7/22

441-r²=245

-r²=245-441

-r²=-196

r=14

therefore, inner radius of circle=14cm

Similar questions