Math, asked by parth1112007, 10 months ago

In the adjoining figure , the bisecter of angle A and B meet at a point P . if angle C =100and D=50find the measure of angle APB

Answers

Answered by asmithawagmare
1

Step-by-step explanation:

100+50+x=360

250+x=360. (say APB =x)

x=360-250

x=110

APB angle is 110

Answered by SarcasticL0ve
8

\star\;\normalsize{\underline{\underline{\frak \pink{GivEn:-}}}}

  • the bisecter of angle ∠A and ∠B meet at a point P.

  • ∠C =100 and ∠D=50.

\star\;\normalsize{\underline{\underline{\frak \pink{To\;Find:-}}}}

  • ∠APB = ?

\star\;\normalsize{\underline{\underline{\frak \red{Solution:-}}}}

★ Let ∠A and ∠B be x.

\normalsize\sf {\underline{In\; Quadrilateral\;ABCD:-}}

:\implies\normalsize\sf ∠A + ∠B + ∠C + ∠D = 360^\circ \\\\ :\implies\normalsize\sf x + x + 100^\circ + 50^\circ = 360^\circ \\\\ :\implies\normalsize\sf 2x + 150^\circ = 360^\circ \\\\ :\implies\normalsize\sf 2x = 360^\circ - 150^\circ \\\\ :\implies\normalsize\sf 2x = 210^\circ \\\\ :\implies\normalsize\sf x = \cancel{ \dfrac{210^\circ}{2}} \\\\ :\implies\normalsize\sf x = \bf{105^\circ}

\therefore\normalsize\sf ∠A \; and \; ∠B = \bf{105^\circ}

\normalsize\sf {\underline{In\;\triangle\;APB:-}}

  • \normalsize\sf ∠BAP = \dfrac{1}{2} ∠A = \cancel{ \dfrac{105^\circ}{2}} = \bf{52.5^\circ}

  • \normalsize\sf ∠PBA = \dfrac{1}{2} ∠B = \cancel{ \dfrac{105^\circ}{2}} = \bf{52.5^\circ}

\leadsto ∠APB + ∠BAP + ∠PBA = 180°

\leadsto ∠APB + ∠52.5° + ∠52.5° = 180°

\leadsto ∠APB + ∠105° = 180°

\leadsto ∠APB = 180° - 105°

\leadsto ∠APB =  \bf{75^\circ}

\normalsize{\underline{\underline{\sf{\purple{\dag\;Hence\;Solved!!}}}}}

 \rule{200}{3}

Similar questions