Math, asked by 210pk, 1 year ago

in the arithmetic series 2,5,8... up to 50 terms and 3,5,7,9.... up to 60 terms find how many terms are identical

Answers

Answered by Anonymous
7

AnswEr:

Let the mth term of the first A.P. be equal to the nth term of the second A.P. Then,

 \qquad \tt \: 2 + (m - 1) \times 3 = 3 + (n - 1) \times 2 \\  \\  \tt \rightarrow \: 3m - 1 = 2n + 1 \\  \\ \tt \rightarrow \:3m = 2n + 2 \\  \\ \tt \rightarrow \: \frac{m}{2}  =  \frac{n + 1}{3}  = k \:  \:  \:  \: (say) \\  \\  \rightarrow \tt \: m = 2k \:  \:  \: and \:  \:  \: n = 3k - 1 \\  \\ \tt \Rightarrow \:2k \leqslant 50 \:  \:  \: and \:  \:  \: 3k - 1 \leqslant 60 \\  \\ \tt \Rightarrow \:k \leqslant 25 \:  \:  \: and \:  \:  \: k \leqslant 20 \frac{1}{3}  \\  \\ \tt \Rightarrow \:k \leqslant 20 \\  \\ \tt \Rightarrow \:k = 123...20

Corresponding to each value of k, we get a pair of identical terms.

Hence, there are 20 identical terms in the two A.P.'s.

Similar questions