Physics, asked by Anonymous, 9 months ago

In the arrangement of capacitors shown in figure, each capacitor is of 9 μF, Then the equivalent capacitance between in points A and B is ---​

Attachments:

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
20

\displaystyle\large\underline{\sf\red{Given}}

✭ All the capacitance are of equal values

✭ So C1 = C2 = C3 = C4 = 9 micro farad

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ Equivalent capacitance between A & B?

\displaystyle\large\underline{\sf\gray{Solution}}

Check the attachment for a simplified diagram!!

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

Case 1

\displaystyle\sf C_1 \ \& \ C_3 \ are \ parallel\\

\displaystyle\sf C_x = C_1+C_3\\

\displaystyle\sf \purple{C_x = 18 \mu F}

Case 2

\displaystyle\sf C_2 \ \& \ C_x \ are \ in \ series\\

»» \displaystyle\sf \dfrac{1}{C_y} = \dfrac{1}{C_2} + \dfrac{1}{C_x}\\

»» \displaystyle\sf \bigg\lgroup \dfrac{1}{9}+\dfrac{1}{18}\bigg\rgroup \bigg\lgroup \dfrac{1}{10^{-6}}\bigg\rgroup\\

»» \displaystyle\sf \bigg\lgroup\dfrac{2+1}{18} \bigg\rgroup\bigg\lgroup\dfrac{1}{10^{-6}}\bigg\rgroup\\

»» \displaystyle\sf \dfrac{1}{C_y} = \dfrac{3}{18}\times \dfrac{1}{10^{-6}}\\

»» \displaystyle\sf C_y = \dfrac{18}{3}\times 10^{-6}\\

»» \displaystyle\sf \orange{C_y = 6\mu F}

Case 3

\displaystyle\sf C_y \ \& \ C_4 \ are \ parallel\\

\displaystyle\sf C_R = C_y+C_4\\

\displaystyle\sf (6+9)10^{-6}\\

\displaystyle\sf \pink{C_R = 15\mu F}

\underline{\therefore\textsf{Resultant capacitance between A and B is  15  micro farad}}

━━━━━━━━━━━━━━━━━━

Attachments:
Answered by XxsinglequeenxX28
1

capacitor \:  in \:  parallel

c_{3} + c_{1} = 18fp = =c′

series

 \frac{1}{c}  =  \frac{  1}{ c′   }  +   \frac{1}{ c_{2} }

 \frac{1}{18}  +  \frac{1}{9}

 =  \frac{1}{6}

c′   = 6pf

equivalent = (9 + 6)pf

 = 15pf

Attachments:
Similar questions