Math, asked by Anonymous, 1 month ago

In the attachment is a solution of inequality problem. There is a mistake in my answer. Find it out and correct it. Also give full solution of the question.
Spam will be reported immediately.

Attachments:

Answers

Answered by SakshiTiwari0507
1

I hope this is correct

Pls mark as brainliest and vote if you find this Helpful

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Solve the inequality :-

\rm :\longmapsto\:\dfrac{ {x}^{2}  - 19x + 88}{ {x}^{2}  - 11x + 24}  \leqslant 0

 \green{\large\underline{\sf{Solution-}}}

Given inequality is

\rm :\longmapsto\:\dfrac{ {x}^{2}  - 19x + 88}{ {x}^{2}  - 11x + 24} \leqslant 0

By splitting of middle terms, we get

\rm :\longmapsto\:\dfrac{ {x}^{2}  - 11x - 8x + 88}{ {x}^{2}  - 8x - 3x + 24} \leqslant 0

\rm :\longmapsto\:\dfrac{x(x - 11) - 8(x - 11)}{x(x - 8) - 3(x - 8)}  \leqslant 0

\rm :\longmapsto\:\dfrac{(x - 11)(x - 8)}{(x - 8)(x - 3)} \leqslant 0

Let now, first we define the domain.

\rm :\longmapsto\:\dfrac{(x - 11)(x - 8)}{(x - 8)(x - 3)} \leqslant 0 \:  \: provided \: that \: x \:  \ne \: 3,8

\rm :\longmapsto\:\dfrac{x - 11}{x - 3} \leqslant 0 \:  \: provided \: that \: x \:  \ne \: 3,8

\rm :\longmapsto\:\dfrac{(x - 11)(x - 3)}{(x - 3) {}^{2} } \leqslant 0 \:  \: provided \: that \: x \:  \ne \: 3,8

\rm :\longmapsto\:(x - 11)(x - 3) \leqslant 0 \:  \: provided \: that \: x \:  \ne \: 3,8

\bf\implies \:x \:  \in \: (3,8) \:  \cup \: (8,11]

Additional Information :-

If a and b are real numbers such that a < b, then

\boxed{ \bf{ \: (x - a)(x - b) &lt; 0\bf\implies \:x \in \: (a,b)}}

\boxed{ \bf{ \: (x - a)(x - b)  \leqslant  0\bf\implies \:x \in \: [a,b]}}

\boxed{ \bf{ \: (x - a)(x - b)  \geqslant  0\bf\implies \:x \in \: ( -  \infty ,a] \cup \: [b, \infty )}}

\boxed{ \bf{ \: (x - a)(x - b)  &gt;   0\bf\implies \:x \in \: ( -  \infty ,a) \cup \: (b, \infty )}}

\boxed{ \bf{ \:  \frac{x - a}{x - b}   &gt;   0\bf\implies \:x \in \: ( -  \infty ,a) \cup \: (b, \infty )}}

\boxed{ \bf{ \:  \frac{x - a}{x - b} \geqslant   0\bf\implies \:x \in \: ( -  \infty ,a] \cup \: (b, \infty )}}

\boxed{ \bf{ \:  \frac{x - a}{x - b}  &gt;    0\bf\implies \:x \in \: ( -  \infty ,a) \cup \: (b, \infty )}}

Attachments:
Similar questions