In the below figure, PQ||RS||UV. Find the value of y.
Answers
Answered by
3
Answer:
First, We draw a line AB parallel to PQ.
Since, AB ll PQ and QT is a transversal.
\therefore \: PQT \: + QTA =180 \: (co \: interior \: angles)∴PQT+QTA=180(cointeriorangles)
\implies \: 110 + QTA =180⟹110+QTA=180
\implies \: QTA =180 - 110 \: = 70 \:⟹QTA=180−110=70
Since, AB ll PQ and PQ ll RS , So AB ll RS and RT is a transversal.
\therefore \: SRT + RTB = 180 (co \: interior \: angles)∴SRT+RTB=180(cointeriorangles)
\implies\: 127+ RTB =180⟹127+RTB=180
\implies \: RTB =180 - 127 = 53⟹RTB=180−127=53
Since, AB is a straight line.
QTA+y+RTB=180
70+y+53=180
y+123=180
y=180 - 123
y= 57
Similar questions