In the cylindrical container the radius of the base is 8 cm if the height of the water level is 20 cm find the volume of the water in the container
Answers
Answer:
Radius = 8 cm
Height of cylinder = 240 cm
the conical part in 36 cm high.
Weight of the pillar if one cu. cm of iron weighs 7.8 grams.
We know that:-
Volume of cylinder = πr²h
Volume of cone = ⅓πr²h
Now,
Volume of cylinder = 3.14 × 8 × 8 × 240
=> 48320.4 cm^3
Now,
⅓ × 3.14 × 8 × 8 × 36
1 × 3.14 × 8 × 8 × 12
3.14 × 64 ×12
2411.52 cm^3
Now,
W = 48320.4 + 2411.52
W = 50730
Now,
1kg = 1000gm
7.8/1000 × 50730
0.0078 × 50730
395.4 kg
Weight of pillar is 395 kg.
Answer:
We know that:-
Volume of cylinder = πr²h
Volume of cone = ⅓πr²h
Now,
Volume of cylinder = 3.14 × 8 × 8 × 240
=> 48320.4 cm^3
Now,
⅓ × 3.14 × 8 × 8 × 36
1 × 3.14 × 8 × 8 × 12
3.14 × 64 ×12
2411.52 cm^3
Now,
W = 48320.4 + 2411.52
W = 50730
Now,
1kg = 1000gm
7.8/1000 × 50730
0.0078 × 50730
395.4 kg
Weight of pillar is 395 kg.
Thanks!!