Math, asked by shelbyteal9, 1 year ago

In the diagram, WZ = . The perimeter of parallelogram WXYZ is +

Answers

Answered by anamikaraj
1
the perimeter of parallelogram wxyz is 1/2base×height
Mark it as a brainliest answer
follow me also
Answered by stefangonzalez246
2

The perimeter of parallelogram, WXYZ is 8+2\sqrt{26}.

WZ = 2\sqrt{26}.

Given

To find the perimeter of the parallelogram, WXYZ and value of WZ.

From the figure,      

It has four points WXYZ.      

Values of WXYZ are :  W(-2,4)    X(2,4)    Z(-3,-1)     Y(1,-1)

To find WZ :

Using distance formula for W(-2,4) and Z(-3,-1)

                   Distance = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}  }

                   x_1 = -2         x_2 = -3      y_1 = 4      y_2 = -1

                             WZ = \sqrt{(-3-(-2))^{2}+((-1)-(4))^{2}  }

                                    = \sqrt{(-3+2)^{2}+(-1-4)^{2}  }    

                                    = \sqrt{(-1)^{2}+(-5)^2 }

                                    = \sqrt{1+25}

                             WZ = \sqrt{26}

Where, WZ is parallel to XY , so if WZ = \sqrt{26} then, XY = \sqrt{26}.

Hence,    WZ + XY = \sqrt{26} + \sqrt{26} = 2\sqrt{26}.

Using distance formula for,  W(-2,4)    X(2,4)

                    Distance = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}  }

                   x_1 = -2         x_2 = 2      y_1 = 4      y_2 = 4

                                     = \sqrt{(2 - (-2))^{2}+(4-4)^2 }\\\\=\sqrt{(2+2)^2+0} \\ \\=\sqrt{(4)2}\\\\=\sqrt{16}      

So, WX = \sqrt{16}  = 4, which is parallel to the other side ZY = 4.

(i.e.,)   WX + ZY =  4 + 4 = 8.

Therefore, total perimeter of parallelogram WXYZ is 8 + 2\sqrt{26}.

To learn more...

1. brainly.in/question/1797838        

2. brainly.in/question/1427771                                                                        

Attachments:
Similar questions