Math, asked by Anshshrivastav974, 3 months ago

 In the equation 3x = 4 - x, tranposing (-x) to LHS, we get :- *


Answers

Answered by Anonymous
2

Given:

↬equation 3x = 4 - x

To Find:

value of x

Analysis:

here we use: \sf{\blue{\underbrace{transportation \: method}}}

Solution:

 : ⟹ \sf3x  = 4 - x \\  \\  : ⟹ \sf3x + x = 4 \:  \\  \\  : ⟹ \sf4x = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  : ⟹ \sf \: x =  \cancel \frac{4}{4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  : ⟹ \sf \: x = 1\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue{ \underline{ \boxed{ \pink{ \mathfrak{ \therefore \:value \: of \: x = 1}}}}}

Verification:

now we put 1 in the place of the x and check weather it satisfies the rule.!

  : ⟹ \sf3 {\blue{ \: x }}= 4 -  \blue{x}\:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  : ⟹ \sf 3( \blue{1}) = 4 - 3( \blue{1})  \\  \\ : ⟹ \sf3 = 3\:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:

L.H.S = R.H.S

 \blue{ \underline{ \sf{ \huge{ hence \: proved}}}} { \huge{\blue{\dag}}}

hope this helps.!!

Similar questions