Math, asked by ansh14798234, 9 months ago


In the equation frac{{{7^{48}} - {7^{47}} - {7^{46}}}}{{41}},, = ,{7^x} , what is the value of x?
(1)
48
(2)
47
(3)
49
(4)
46​

Answers

Answered by RvChaudharY50
206

Qᴜᴇsᴛɪᴏɴ :-

 \bf \: \dfrac{({7}^{48} -{7}^{47} -{7}^{46})}{41} =  {7}^{x}\\\\\bf \: find \: x \: .

Sᴏʟᴜᴛɪᴏɴ :-

\red\longmapsto\:\rm \:\dfrac{({7}^{48} -{7}^{47} -{7}^{46})}{41} =  {7}^{x}\\\\ \bf \: taking \: common \\  \\\red\longmapsto\:\rm \:\dfrac{ {7}^{46} ({7}^{2} -{7}^{1} -1)}{41} =  {7}^{x}\\\\ \red\longmapsto\:\rm \:\dfrac{{7}^{46} (49 -7 -1)}{41}={7}^{x}\\\\ \red\longmapsto\:\rm \:\dfrac{ {7}^{46}  \cancel{(41)}}{ \cancel{41}} =  {7}^{x}\\\\ \red\longmapsto\:\rm \: {7}^{46}  =  {7}^{x}\\\\\red\longmapsto\:\rm \:\bold{\boxed{\large{\boxed{\orange{\small{\boxed{\large{\red{\bold{x = 46}}}}}}}}}}

\rule{200}{4}

Answered by Anonymous
83

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \: {\sf{  \frac{ {7}^{48}  -  {7}^{47} -  {7}^{46}  }{41}  =  {7}^{x} }} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

  • Value of x.

{\bf{\blue{\underline{Now:}}}}

 : \implies {\sf{  \frac{ {7}^{48}  -  {7}^{47} -  {7}^{46}  }{41}  =  {7}^{x} }} \\ \\

 : \implies {\sf{  \frac{  {7}^{46} ({7}^{2}  -  {7}^{1} -  1 ) }{41}  =  {7}^{x} }} \\ \\

 : \implies {\sf{  \frac{  {7}^{46} (49  -  7 -  1 ) }{41}  =  {7}^{x} }} \\ \\

 : \implies {\sf{  \frac{  {7}^{46} (41 ) }{41}  =  {7}^{x} }} \\ \\

 : \implies {\sf{  \frac{  {7}^{46} ( \cancel{41 }) }{ \cancel{41}}  =  {7}^{x} }} \\ \\

 : \implies{\sf{  {7}^{46}  =  {7}^{x} }} \\ \\

If bases are equal exponent will also be equal,

 : \implies{\sf{ x  =  46}} \\ \\


RvChaudharY50: Perfect. ❤️
Similar questions