In the fig. angle ADC = 130° and chord BC= chord BE. Find angle CBE.
Answers
Answered by
5
The point A, B, C and D formed a cyclic quadrilateral .
∴ ∠ADC + ∠OBC = 180°
⇒ 130°+ ∠OBC = 180°
⇒ ∠OBC = 180°
Now, in ΔBOC and ΔBOE ,
BC = BE [given]
OC = OE [radii of the same circle]
OB = OB [common side]
∴ ΔBOC ≅ ΔBOE [by SSS congruent rule]
Then , ∠OBC = ∠OBE = 50° [CPCT]
∴ ∠CBE = ∠CBO + ∠EBO = 50° + 50° = 100°
∴ ∠ADC + ∠OBC = 180°
⇒ 130°+ ∠OBC = 180°
⇒ ∠OBC = 180°
Now, in ΔBOC and ΔBOE ,
BC = BE [given]
OC = OE [radii of the same circle]
OB = OB [common side]
∴ ΔBOC ≅ ΔBOE [by SSS congruent rule]
Then , ∠OBC = ∠OBE = 50° [CPCT]
∴ ∠CBE = ∠CBO + ∠EBO = 50° + 50° = 100°
Answered by
0
Answer:
∠CBE =100°
Step-by-step explanation:
In △BCO and △BEO
⇒ BC=BE [ Given ]
⇒ ∠BCO=∠BEO [ Base angles of equal sides are also equal ]
⇒ BO=BO [ Common side ]
∴ △BCO≅△BEO [ By SAS congruence rule ]
⇒ ∠CBO=∠OBE [ C.P.C.T. ]
Quadrilateral ABCD is a cyclic quadrilateral since, its points lies on a circle.
⇒ ∠ADC+∠CBA=180°
[ Sum of opposite angles of a cyclic quadrilateral is supplementary ]
⇒ 130° +∠CBA=180°
⇒ ∠CBA=50°
i.e. ∠CBO=50°
, ∠OBE=50°
⇒ ∠CBE=50° +50° =100°
Therefore, ∠CBE =100°
Similar questions