Math, asked by HDeep, 1 year ago

In the fig angle BED=BDE and E divides BC in the ratio 2:1.prove that AF×BE=2AD ×CF

Answers

Answered by poonammishra148218
4

Answer:

AF×BE=2AD×CF

Step-by-step explanation:

Step : 1 Through C draw CG∥FD.

Now, In△AFD,

CG∥FD

⇒  \frac{\mathrm{AC}}{\mathrm{CF}}=\frac{\mathrm{AG}}{\mathrm{GD}}            [ BPT ]

\Rightarrow \frac{\mathrm{AC}}{\mathrm{CF}}+1=\frac{\mathrm{AG}}{\mathrm{GD}}+1

\Rightarrow \frac{\mathrm{AC}+\mathrm{CF}}{\mathrm{CF}}=\frac{\mathrm{AG}+\mathrm{GD}}{\mathrm{GD}}

\Rightarrow \frac{\mathrm{AF}}{\mathrm{CF}}=\frac{\mathrm{AD}}{\mathrm{GD}}               ------ ( 1 )

Step : 2  In △BCG,

Since, DE∥GC, then

\Rightarrow \frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BD}}{\mathrm{GD}}
\Rightarrow \frac{2}{1}=\frac{\mathrm{BD}}{\mathrm{GD}} \quad[\mathrm{As}, \mathrm{BE}: \mathrm{EC}=2: 1]

\Rightarrow \mathrm{BD}=2 \mathrm{GD}

Step : 3 In △BDE,

\Rightarrow \angle \mathrm{BED}=\angle \mathrm{BDE}

⇒  BD=BE         [ Sides opposite to equal angles are equal ]        ----- ( 3 )

From ( 2 ) and ( 3 ), we get

⇒  2GD=BE

\Rightarrow \mathrm{GD}=\frac{\mathrm{BE}}{2}               ----- ( 4 )

Substituting the value of GD from ( 4 ) in ( 1 ), we get

\Rightarrow \frac{\mathrm{AF}}{\mathrm{CF}}=\frac{\mathrm{AD}}{\frac{\mathrm{BE}}{2}}

\Rightarrow \frac{\mathrm{AF}}{\mathrm{CF}}=\frac{2 \mathrm{AD}}{\mathrm{BE}}

⇒  AF×BE=2AD×CF

To learn more about similar questions visit:

https://brainly.in/question/737059?referrer=searchResults

https://brainly.in/question/759640?referrer=searchResults

#SPJ1

Attachments:
Similar questions