Physics, asked by nisargasudeep8122, 1 year ago

in the fig, the tension in the horizontal cord is 30N Find the weight of the body B​

Answers

Answered by shadowsabers03
3

\displaystyle\large\boxed{\sf{(B)\quad\!30\ N}}

Let the tension in the cord 1 = \displaystyle\sf{T_1.}

Let the tension in the cord 2 = \displaystyle\sf{T_2.}

Since cord 2 makes an angle 45° with the vertical, the vertical component of the tension in it will be \displaystyle\sf{T_2\cos45^{\circ},} upwards opposite to \displaystyle\sf{T_1,} and the horizontal component is \displaystyle\sf{T_2\sin45^{\circ},} leftwards opposite to 30 N.

The weight of the body B is balanced by the tension in the cord 1, i.e.,

\displaystyle\longrightarrow\sf{W_B=T_1\quad\quad\dots(1)}

Since the point of intersection is in equilibrium, the net horizontal force acting on the point is zero. Thus,

\displaystyle\longrightarrow\sf{T_2\cos45^o=T_1}

From (1),

\displaystyle\longrightarrow\sf{W_B=T_2\cos45^o}

\displaystyle\longrightarrow\sf{W_B=\dfrac{T_2}{\sqrt2}\quad\quad\dots(2)}

And the net vertical force acting on it is also zero. Thus,

\displaystyle\longrightarrow\sf{T_2\sin45^o=30\ N}

\displaystyle\longrightarrow\sf{\dfrac{T_2}{\sqrt2}=30\ N}

Therefore (2) becomes,

\displaystyle\longrightarrow\sf{\underline{\underline{W_B=30\ N}}}

Similar questions