Math, asked by vandna020986, 6 months ago

In the figure 10.9, / || m | n and p is a transversal. If 21 = 110°, find angles x, y, z,
and w.

Attachments:

Answers

Answered by rajunaga110
11

Answer:

x=70

y=70

z=70

w=110

Step-by-step explanation:

angle 1 and x are linear pair so if we add both of them we will 180

1+x=180

x=180-1

x=180-110=70

and angle x and angle y are exterior alternative angles

so they are equal

and angle y and angle z are interior alternative angles

so they are equal

z and w are again linear pair so they will add up-to 180

so z+w=180

70+w=180

w=180-70=110

w=110

Answered by ShrinkingViolet
23

➝ANSWER

Given: 1) ABCD is a quadrilateral.

2) \sf\angle1 = 110°

To find: \sf\angle  x \:  \angle y \:  \angle  z  \:  \angle w

Solution:

  \sf\angle  1    +   \angle  x \:   = 180 ^{\circ} \: (linear  \: pair) \\   \sf 110 ^{\circ}+  \angle x = 180 ^{\circ}  \\     \sf \angle x  =180 ^{ \circ}  - 110 ^{ \circ}  \\  \sf \angle x =  70 ^{ \circ}

 \rm \: l \parallel m \: and \: p \: is \: a \: transversal \\     \sf \angle x =  \angle  y = 70 ^{ \circ} (alternate \: exterior \: opp. \: angle) \\  \\  \rm \: m \parallel n \: and \: p \: is \:  a \: transversal \\  \sf \angle y =  \angle z = 70 ^{ \circ} (alternate \: interior \: opp. \: angle) \\  \\  \rm \: l \parallel \: m \: and \: p \: is \: a \: transversal \\  \sf \angle1   =  \angle w = 110 ^{ \circ} (alternate \: exterior \: opp. \: angle)

_________________________

Attachments:
Similar questions