Math, asked by parusdhanus, 1 month ago

In the figure 6.35 triangles ODC and OBA are similar. The values of angles DOC , DCO and OAB are respectively

3 points
55, 55, 55
45, 45, 45
55, 45, 55
45, 55, 45

Attachments:

Answers

Answered by jeon36491
10

Answer:

∠DOC+125

o

=180

o

(linear pair)

⇒ ∠DOC=180

o

−125

o

=55

o

In △DOC

∠DCO+∠CDO+∠DOC=180

o

(sum of three angles of △ODC)

⇒ ∠DCO+70

o

+55

o

=180

o

⇒ ∠DCO+125

o

=180

o

⇒ ∠DCO=180

o

−125

o

=55

o

Now we are given that △ODC∼△OBA

⇒ ∠OCD=∠OAB (Corresponding angles of similar triangles)

⇒ ∠OAB=∠OCD=∠DCO=55

o

i.e., ∠OAB=55

o

Hence we have,

∠DOC=55

o

;∠DCO=55

o

;∠OAB=55

o

Have a bangtastic day☺☺

Stay safe and keep smile✌✌

Saranghae army ❤❤

Answered by 5gen
4

Step-by-step explanation:

angle BOC = angle AOD = 125°

so,

angle ODC + angle OCD = 125° ( By exterior angle property)

70° + angle OCD = 125°

angle OCD = 125°- 70°

= 55°

so,

angle OCD = angle OAB ( interior alternate angles)

angle DOC + angle OCD + angle ODC = 180°

DOC + 55° + 70°= 180°

DOC = 180° - 125°

= 55°

55,55,55

Similar questions