Math, asked by hh6471821, 5 months ago

In the figure A=65°, ABC=56°

and BO, CO are the bisector of

angles ABC and BCA

respectively then find OCB and

BOC.​

Answers

Answered by Anonymous
20

Please see attachment first :D

GIVEN:

  • Angle A=65°
  • OB and OC are bisectors of angle B and C respectively.
  • Angle ABC=56°

TO FIND:

  • OCB
  • BOC

SOLUTION:

As OB is bisector of angle B.

So:-

 \sf \large :  \implies \:  \:  \angle OBC= \frac{56°}{2}=28°

In triangle ABC by applying angle sum property

 \sf \large  :  \implies \:  \:  \angle A+ \angle B+  \angle C=180°

 \sf \large  :  \implies \:  \: 65 \degree+ 56 \degree+  \angle C=180°

 \sf \large  :  \implies \:  \:  121\degree+  \angle C=180°

 \sf \large  :  \implies \:  \:  \angle C=180° - 121 \degree

 \sf \large  :  \implies \:  \:  \angle C=59°

 \large \sf : \implies \:  \:  \angle OCB= \frac{59}{2}

 \large \sf : \implies \:  \:  \angle OCB= 29.5 \degree \:  \:  \huge\checkmark

Now we have to find angle BOC

In triangle BOC by applying angle sum property

 \sf \large :  \implies \:  \:  \angle OBC+  \angle OCB +  \angle BOC=180°

 \sf \large :  \implies \:  \:  28 \degree+  29.5 \degree +  \angle BOC=180°

 \sf \large :  \implies \:  \:  57.5 \degree +  \angle BOC=180°

 \sf \large :  \implies \:  \:    \angle BOC=180° - 57.5 \degree

 \sf \large :  \implies \:  \:    \angle BOC=122.5\degree \huge \checkmark

Important property included is angle sum property.

___________________________

RELATED FORMULA!!

\bf=>Area \:of \:equilateral\: ∆=\frac{√3}{4}Side²

\bf=>Area\:of\:right\:angled\:∆=\frac{1}{2}×Base×height

Attachments:
Similar questions