In the figure, a semicircle circumscribes a trapezium ABCD. If AB = 2CD. LADC = 120 and the radius of the semicircle is r, then the area of the shaded region is......
please urgent
please don't spam
Answers
Answered by
2
Let us consider a figure.
Here ABCD is the trapezium in the semi-circle with center '0'
∠ ADB=90°
AD=ABcosθ=2Rcosθ
AE=ADcosθ=2Rcos
2
θ
ER=AB−2AC=2R−4Rcos
2
θ
DE=ADsinθ=2Rsinθcosθ
Area of Trapezium =
2
1
(AB+CD)×DE
=
2
1
(2R+2R−4Rcos
2
θ)×2Rsinθ
=
2
1
[4R−4Rcos
2
θ]2Rsinθ
A=4R
2
(1−cos
2
θ)cosθsinθ
A=4R
2
sin
2
θcosθ
For the maximum area, differentiate w.r.t θ
θ
dA
=12R
2
sin
2
θcos
2
θ−4R
2
sin
4
θ=0
⇒sin
2
θ4R
2
[3cos
2
θ−sin
2
θ]=0
⇒sin
2
θ=0or3cos
2
θ−sin
2
θ=0
⇒θ=0°tan
2
θ=3
tanθ=
3
θ=
3
π
Therefore area will be maximum at θ=
3
π
A=4R
2
sin
3
θcosθ
Atθ=
3
π
A=4R
2
sin
3
3
π
cos
3
π
=4R
2
(
2
3
)
3
×
2
1
=2R
2
4
3
3
A=
4
3
3
R
2
Hence option A is the correct answer.
u can to by this.way pls mark me as brainlest
Similar questions