Math, asked by sourabh12490, 10 months ago

in the figure ,A0=0D= 0C and reflex AOC =230 FIND THE VALUE OF X​

Attachments:

Answers

Answered by Anonymous
5

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

GIVEN

\rightarrow \angle AOC_{reflex} =230\degree\\   \rightarrow AO=OD=OC\\ \rightarrow x=?

FOr the ∆ AOD&∆ COD,

\rightarrow OD=OD\:\:(\because common\: sides)\\  \rightarrow AO=OC\:\:(given)\\ and \rightarrow AO=OD=OC\:\:(given)\\ \triangle AOD &#8776 \triangle COD\\ \therefore \angle OAD= \angle OCD\:\:(c.p.c.t.)

Now, for ∆ AOD,

AO=OD

so, \rightarrow \angle ADO= \angle OAD\\</p><p>

Now, for ∆ OCD

OD =OC

so, \rightarrow \angle  ODC= \angle OCD\\ \rightarrow \angle ODC=\angle OAD</p><p>

Now,

\therefore \angle ADO=\angle ODC

Now ,,,

\rightarrow \angle AOC=360\degree-\angle AOC_{reflex}\\ \rightarrow \angle AOC=360\degree-230\degree\\  \rightarrow \angle AOC=130\degree\\

therefore....

 \bf\implies \angle AOD=180\degree-(\angle OAD+\angle ODA)\\   \bf\implies \angle AOD=180\degree-(\angle OCD+\angle ODC)\\</p><p> \bf\implies \angle AOD=\angle COD\\</p><p>  \bf\implies \angle AOD=\angle COD=\frac{1}{2}\angle AOC\\now \:given\:That\:\:\angle AOC= 130\degree\\ \therefore \bf\implies \angle AOD=\angle COD=\frac{1}{2}\times 130\degree\\    \bf\implies \angle AOD=\angle COD=65\degree

Now from the ∆AOD:-

\bf\rightarrow \angle ADO+\angle OAD+\angle AOD=180\degree \\ \bf \rightarrow \angle ADO+\angle ADO=180\degree-65\degree\\ (\because \angle ADO=\angle OAD\:\:(proved \:earlier) \\ \bf</p><p>\rightarrow 2\angle ADO=115\degree\\ \bf\rightarrow \angle ADO=\frac{1}{2}\times 115\degree\\  \bf \rightarrow \boxed{\bf\red{\angle ADO=\frac{115\degree}{2}}}

\therefore \rightarrow\boxed{\bf\red{\angle ODC=\frac{115\degree}{2}}} \:\:(\because \angle ADO=\angle ODC)

\therefore \angle ADC=\angle ADO+\angle ODC\\ \implies \angle ADC=\frac{115\degree}{2}+\frac{115\degree}{2}\\ \implies \boxed{\boxed{\green{\bf\angle ADC=115\degree}}}

Now.......

\therefore \implies \angle ADC+\angle ABC=180\degree\:\:\\(\because sum \:opposite \:angles\: of\: \\a\: parallelogram\: Is =180\degree ) \\ \implies 115\degree+x=180\degree\\ \implies x=180\degree-115\degree\\ \implies \boxed{\large\mathcal\pink{\bf x=65\degree}}

______________________________________________

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \&amp;#35;\mathcal{answer with quality  }\:  \:  \&amp;#38;  \:  \: \&amp;#35;BAL }

Wait please answer is in progress....

Similar questions