Math, asked by ayat99, 1 month ago

In the figure, AB II DC, find the value of x.​

Attachments:

Answers

Answered by sunderramsehgal
0

BD

= 6x-1=2x+1

= 6x-2x=1+1

= 4x=2

= x=2/4

= x=1/2

AC

= 3x-1=5x-1

= 3x-5x=-1+1

= -2x=0

= x=0/-2

= x=0

Therefore, BD= 1/2. and AC= 0

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{It is given that }AB \parallel CD

       \text{In }\triangle{COD}\text{ and }\triangle{AOB}

       \angle{ODC} = \angle{OBA} \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\text{Angles on opposite sides of the transversal are equal})

       \angle{OCD} = \angle{OAB} \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\text{Angles on opposite sides of the transversal are equal})

\implies \text{By AA similarity }\triangle{COD}\text{ and }\triangle{AOB}\text{ are similar}

\implies \dfrac{AO}{CO}= \dfrac{BO}{DO}\text{ ------ (i)}

       \text{From the figure, we know that:}

       AO = 3x-1

       CO = 5x-1

       BO = 2x-1

       DO = 6x-1

       \text{Substituting in (i)}

\implies \dfrac{3x-1}{5x-1}= \dfrac{2x-1}{6x-1}

       \text{Cross multiplying...}

\implies (3x-1)(6x-1)= (2x-1)(5x-1)

       \text{Simplifying...}

\implies 18x^{2} - 3x - 6x + 1= 10x^{2} - 2x - 5x + 1

       \text{Simplifying...}

\implies 18x^{2} - 9x + 1= 10x^{2} -7x + 1

       \text{Transposing terms of R.H.S to L.H.S}

\implies 18x^{2} - 9x + 1- 10x^{2} +7x - 1 = 0

       \text{Simplifying...}

\implies 8x^{2} - 2x = 0

       \text{Taking }2x \text{ common}

\implies 2x(4x- 1) = 0

\implies x = 0 , \dfrac14

       \text{Putting }x = 0 \text{ we see that all lengths become negative}

       \text{We know that length cannot be negative. Hence, }x=0 \text{ is eliminated}

 \therefore \text{ }\text{ }\boxed{x = \dfrac{1}{4}}

Similar questions