Math, asked by prince507923, 1 year ago

In the figure, ABC and DBC are two triangles on the same base BC . if AD intersects BC at O , show that area of traingle ABC proporrional area of traingle DBC =AO proportional DO​

Answers

Answered by Mylo2145
114

 \textbf {Question:}

In the figure, ΔABC & ΔDBC are two triangles on the same base BC. If AD intersects BC at O, show that  \dfrac{ar( \triangle abc)}{ar( \triangle dbc)} =  \dfrac{ao}{do}.

 \textbf {Solution:}

 \tt{Given} : ΔABC & ΔDBC on the same base BC.

 \tt{To\:prove} :  \dfrac{ar( \triangle abc)}{ar( \triangle dbc)} =  \dfrac{ao}{do}

 \tt{Construction} : AM perpendicular to BC and DN perpendicular to BC

 \tt{Proof} :

In ΔAMO & ΔDNO,

  \angle AOM =  \angle DON

 \angle AMO =  \angle DNO

 \therefore \triangle AMO  \approx \triangle DNO

 \implies  \dfrac{AM} {DN} = \dfrac {AO} {DO} \: (CSST)

Now,

 \dfrac{ar(ABC)} {ar(DBC)} =   \dfrac { \frac{1}{2}  \times BC \times  AM} { \frac{1}{2}  \times BC \times  DN} \\  \\  \dfrac{ar(ABC)} {ar(DBC)} =  \dfrac{AM} {DN}  =  \dfrac{AO} {DO} \\  \\ Hence, proved.

Attachments:

Mylo2145: ahan! ❤️ itna bhi neat nhi! XD
Mylo2145: thanks for the compliments :)
Anonymous: Gjb♥
Anonymous: Nice answer !
Mylo2145: thanka! ❤️
Anonymous: Amazing ans sisi ☺️
Mylo2145: thanka re! ❤️
Anonymous: nice
Mylo2145: thanka! ❤️
Answered by Anonymous
94

Given :

∆ ABC and ∆DBC have same base BC.

To proof :

\sf{\large{\frac{ar(\triangle ABC)}{ar(\triangle DBC)}=\frac{AO}{DO}}}

Construction :

Draw AM perpendicular to BC from point A and draw DN perpendicular to BC from point D.

Proof :

In ∆ AMO and ∆ DNO,

\sf{\angle AMO=\angle DNO} [right angles]

\sf{\angle AOM=\angle DON} [vertically opposite angles]

So by AA criteria,

\sf{\triangle AOM\approx\triangle DON}

\sf{\large{\frac{ar(\triangle AOM)}{ar(\triangle DON}=\frac{(AO)^2}{(DO)^2}=\frac{(AM)^2}{(DN)^2}}}

[Ratio of the area of two similar triangles is equal to the square of their corresponding sides.]

\sf{\frac{(AO)}{(DO)}=\frac{(AM)}{(DN)}}

Now,

Area of ∆ ABC = \sf{\frac{1}{2}\times BC\times AM}

Area of ∆ DBC = \sf{\frac{1}{2}\times BC\times DN}

\sf{\large{\frac{ar(\triangle ABC)}{ar(\triangle DBC)}=\frac{\frac{1}{2}\times BC\times AM}{\frac{1}{2}\times BC\times DN}=\frac{AM}{DN}=\frac{AO}{DO}}}

Attachments:

Anonymous: Nice one !!
Anonymous: Great ans ley ❤️
Mylo2145: clap clap clap! ❤️
Anonymous: mast
Similar questions