Math, asked by shreyansh00728, 1 year ago

in the figure , ABCD is a parallelogram and P is any point in BC , prove that , area of ∆ ABP + area of. ∆ APD .

Answers

Answered by Anonymous
4

Answer:

Draw AL_|_ BC and PM _|_ AD.  

BC || AD,

AL = PM

ar(ΔABP) +ar(ΔDPC)  

= 1/2*BP *Al+1/2*PC*AL= 1/2*AL*(BP+PC)

= 1/2*AL*BC= 1/2*PM*AD

(Al = PM and BC = AD)  

= ar ( ΔPDA).  

I hope it's help you

Answered by Anonymous
0

(a) Given:

∆ABC in which AD is the median. P is any point on AD. Join PB and PC.

To prove:

(i) Area of ∆PBD = area of ∆PDC.

(ii) Area of ∆ABP = area of ∆ACP.

Proof:

From fig (1)

AD is a median of ∆ABC

So, ar (∆ABD) = ar (∆ADC) …. (1)

Also, PD is the median of ∆BPD

Similarly, ar (∆PBD) = ar (∆PDC) …. (2)

Now, let us subtract (2) from (1), we get

ar (∆ABD) – ar (∆PBD) = ar (∆ADC) – ar (∆PDC)

Or ar (∆ABP) = ar (∆ACP)

Hence proved.

(b) Given:

∆ABC in which DE || BC

To prove:

(i) area of ∆ACD = area of ∆ ABE.

(ii) Area of ∆OBD = area of ∆OCE.

Proof:

From fig (2)

∆DEC and ∆BDE are on the same base DE and between the same || line DE and BE.

ar (∆DEC) = ar (∆BDE)

Now add ar (ADE) on both sides, we get

ar (∆DEC) + ar (∆ADE) = ar (∆BDE) + ar (∆ADE)

ar (∆ACD) = ar (∆ABE)

Hence proved.

Similarly, ar (∆DEC) = ar (∆BDE)

Subtract ar (∆DOE) from both sides, we get

ar (∆DEC) – ar (∆DOE) = ar (∆BDE) – ar (∆DOE)

ar (∆OBD) = ar (∆OCE)

Hence proved.

{\fcolorbox{blue}{black}{\blue{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:HumanIntelligence\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Similar questions