Math, asked by raj69026, 1 year ago

in the figure ABllPQllCD,prove that 1/x+1/y=1/z

Attachments:

Answers

Answered by VaibhavSR
12

Answer:

1/x+1/y=1/z

Step-by-step explanation:

Tip

  • parallel lines can be defined as two lines in the same plane that are at equal distance from each other and never meet.

Given

ABllPQllCD

Find

prove that 1/x+1/y=1/z

Solution

In\triangle \mathrm{ADB} and \triangle \mathrm{PDQ}.

since \mathrm{AB} \| \mathrm{PQ}

\angle \mathrm{ABQ}=\angle \mathrm{PQD} (Corresponding angles)

\angle \mathrm{ADB}=\angle \mathrm{PDQ} (Common)

By AA similarity criterion,

\triangle \mathrm{ADB} \sim \triangle \mathrm{PDQ}\\\therefore \frac{\mathrm{DQ}}{\mathrm{DB}}=\frac{\mathrm{PQ}}{\mathrm{AB}}

\Rightarrow \frac{\mathrm{DQ}}{\mathrm{DB}}=\frac{\mathrm{z}}{\mathrm{x}} \quad \ldots \text { (i) }

Similarly, \triangle \mathrm{PBQ} \sim \triangle \mathrm{CBD}

And, \frac{\mathrm{BQ}}{\mathrm{DB}}=\frac{\mathrm{z}}{\mathrm{x}}

Adding (i) and (ii), we get

\frac{z}{x}+\frac{z}{y}=\frac{D Q+B Q}{D B}=\frac{B D}{B D}

\Rightarrow \frac{z}{x}+\frac{z}{y}=1

\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{1}{z}

Final Answer

1/x+1/y=1/z

https://brainly.in/question/6153788

#SPJ2

Similar questions