In the figure above we have to find z in terms of x and y.
pls help !
Answers
- ABC is a triangle
- Z in terms of X and Y
Angle ABC = 180-y (linear pair)
Angle ACB = 180-x (linear pair)
Angle BAC = z (vertically opposite angles)
- Sum of all the triangles = 180°
180-y+180-x+z = 180°
-y-x+z = 180 - 180 - 180
-y-x+z = -180
z = y + x - 180
In terms of z,
z = y + x - 180
Answer:
\huge{\underline{\underline{\mathbb{\red{Given-}}}}}Given−
ABC is a triangle
\huge{\underline{\underline{\mathbb{\red{To \ prove-}}}}}To prove−
Z in terms of X and Y
\huge{\underline{\underline{\mathbb{\red{Proof-}}}}}Proof−
Angle ABC = 180-y (linear pair)
Angle ACB = 180-x (linear pair)
Angle BAC = z (vertically opposite angles)
\mathbb{\underline{WE \ KNOW \ THAT}}WE KNOW THAT
Sum of all the triangles = 180°
180-y+180-x+z = 180°-y-x+z = 180 - 180 - 180-y-x+z = -180z = y + x - 180
In terms of z,
z = y + x - 180
\mathbb{\underline{HENCE \ PROVED}}HENCE PROVED
< html > < head > < meta name="viewport"the content="width=device-width, initial-scale=1" > < style > Body{ background-color: black; font-family: cursive; } .glow{ font-size: 80px; color: #fff; text-align: center; -webkit-animation: glow 1s ease-in-out infinite alternate; -moz-animation: glow 1s ease-in-out infinite alternate; animation: glow 1s ease-in-out infinite alternate; } @-webkit-keyframes glow{ from{ text-shadow: 0 0 10px #fff, 0 0 20px #fff, 0 0 30px #e60073, 0 0 40px #e60073, 0 0 50px #e60073, 0 0 60px #e60073, 0 0 70px #e60073; } } < /style > < /head > < body > < h1 class="glow" > Tq.. < /h1 > < /body > < /html >