Math, asked by mishka78, 7 months ago

In the figure, altitudes AD and CE of ΔABC intersect each other at the point P. Show that:



(i) ΔAEP ~ ΔCDP
(ii) ΔABD ~ ΔCBE
(iii) ΔAEP ~ ΔADB
(iv) ΔPDC ~ ΔBEC​

Attachments:

Answers

Answered by Anonymous
1

\large\red{\mid{\fbox{\sf{\tt{αиѕωєя:-}}}\mid}}

Given, altitudes AD and CE of ΔABC intersect each other at the point P.

(i) In ΔAEP and ΔCDP,

∠AEP = ∠CDP (90° each)

∠APE = ∠CPD (Vertically opposite angles)

Hence, by AA similarity criterion,

ΔAEP ~ ΔCDP

(ii) In ΔABD and ΔCBE,

∠ADB = ∠CEB ( 90° each)

∠ABD = ∠CBE (Common Angles)

Hence, by AA similarity criterion,

ΔABD ~ ΔCBE

(iii) In ΔAEP and ΔADB,

∠AEP = ∠ADB (90° each)

∠PAE = ∠DAB (Common Angles)

Hence, by AA similarity criterion,

ΔAEP ~ ΔADB

(iv) In ΔPDC and ΔBEC,

∠PDC = ∠BEC (90° each)

∠PCD = ∠BCE (Common angles)

Hence, by AA similarity criterion,

ΔPDC ~ ΔBEC

Answered by yogeshchouhan211
0

Answer:

Given, altitudes AD and CE of ΔABC intersect each other at the point P.

(i) In ΔAEP and ΔCDP,

∠AEP = ∠CDP (90° each)

∠APE = ∠CPD (Vertically opposite angles)

Hence, by AA similarity criterion,

ΔAEP ~ ΔCDP

(ii) In ΔABD and ΔCBE,

∠ADB = ∠CEB ( 90° each)

∠ABD = ∠CBE (Common Angles)

Hence, by AA similarity criterion,

ΔABD ~ ΔCBE

(iii) In ΔAEP and ΔADB,

∠AEP = ∠ADB (90° each)

∠PAE = ∠DAB (Common Angles)

Hence, by AA similarity criterion,

ΔAEP ~ ΔADB

(iv) In ΔPDC and ΔBEC,

∠PDC = ∠BEC (90° each)

∠PCD = ∠BCE (Common angles)

Hence, by AA similarity criterion,

ΔPDC ~ ΔBEC

Similar questions