In the figure angle ABC = angle ADC and AB = AD . Prove that angle BCD is an isosceles triangle?
Answers
Answered by
5
Answer:
In △ABC, we have
AB=AC ∣ given
∠ACB=∠ABC ... (1) ∣ Since angles opp. to equal sides are equal
Now, AB=AD ∣ Given
∴AD=AC ∣ Since AB=AC
Thus , in △ADC, we have
AD=AC
⇒∠ACD=∠ADC ... (2) ∣ Since angles opp. to equal sides are equal
Adding (1) and (2) , we get
∠ACB+∠ACD=∠ABC+∠ADC
⇒∠BCD=∠ABC+∠BDC ∣ Since∠ADC=∠BDC
⇒∠BCD+∠BCD=∠ABC+∠BDC+∠BCD ∣ Adding ∠BCD on both sides
⇒2∠BCD=180
∘
∣ Angle sum property
⇒∠BCD=90
∘
Hence, ∠BCD is a right angle.
Answered by
1
hey Mate here is your answer in the given picture please read it it and if any problem please try Not to report me
Attachments:
Similar questions