Math, asked by pallavenkatesh13, 10 months ago

In the figure angle APB=60degree's
and OP =10cm then PA=?

Attachments:

Answers

Answered by stejendra98
1

Answer:

AP = 5cm

Step-by-step explanation:

In the fig.

Consider ΔAOP &ΔBOP

OA = OB (∵radii of the circle)

OP = OP ( ∵common)

∠OAP = ∠OBP ( ∵ the angle subtended by a tangent is⊥ to the radius  

                                                            `through  point of contact )

⇒Δ OAP ≅ Δ OBP ( SAS congruence rule)

⇒ AP = BP ( C.P.C.T.)           [i]

⇒ ∠OPA = ∠OPB (C.P.C.T.) [ii]

Now

∠OPA = \frac{<APB}{2}      [ From eq ii]

∴∠OPA = ∠OPB =  30°

Now

In ΔAOP

OP = 10 cm (given)

cos60° = \frac{1}{2}

\frac{AP}{OP} =  \frac{1}{2}

\frac{AP}{10} = \frac{1}{2}

AP = 5cm Ans.

Similar questions