In the figure , angle BAC =90° and AD perpendicular to BC. Prove that
(a) BD×CD=BC ^2
(b) AB×AC=BC ^2
(c) BD×CD =AD ^2
(d)AB×AC=AD^2
Want satisfied answer ✅
Kindly don't spam
Answers
Answered by
29
EXPLANATION.
< BAC = 90° ( given ).
AD ⊥ BC. ( given ).
Pythagoras theorem,
H² = B² + P².
in ΔABD
AB² = BD² + AD² ......(1).
in ΔACD
AC² = AD² + DC² .......(2).
BD + DC = BC.
METHOD = 1.
Add equation (1) and (2) we get,
⇒ AB² + AC² = BD² + AD² + CD² + AD².
⇒ AB² + AC² = BD² + AD² + 2BD X CD - 2BD X CD + 2AD².
⇒ BC² = ( BD + CD )² - 2BD X CD + 2AD².
⇒ BC² = BC² - 2BD X CD + 2AD².
⇒ AD² = BD X CD.
METHOD = 2.
⇒ < ADB = < ADC = [ Each are = 90° ].
⇒ < DBA = < DAC [ by AAA criteria ].
⇒ ΔDBA = ΔDAC.
⇒ ΔDBA ≅ ΔDAC [ AAA criteria ].
⇒ DB/DA = DA/DC.
⇒ BD/AD = AD/DC.
⇒ AD² = BD X DC
HENCE PROVED.
Attachments:
Similar questions
Accountancy,
2 months ago
English,
2 months ago
Chemistry,
2 months ago
Math,
5 months ago
Math,
5 months ago
Social Sciences,
11 months ago
Math,
11 months ago
Math,
11 months ago