Math, asked by iamshy, 5 months ago

In the figure, angle POQ and angle ROQ form a linear pair. Find the measure of x.​

Attachments:

Answers

Answered by Uriyella
12
  • The value of x = 216.

Given :

\bullet \: \: \: \anglePOQ and \angleROQ form a linear pair.

 \\ \bf \bullet \:  \:  \:  \angle{POQ} =  \dfrac{x}{2}  \\  \\  \bf \bullet \:  \:  \:  \angle{ROQ} =  \dfrac{x}{3}

To Find :

  • The value of x.

Solution :

Given,

\anglePOQ and \angleROQ form a linear pair.

We know that,

Linear pair = 180°

In linear pair,

Sum of two angles = 180°.

We have,

\bf \bullet \:  \:  \:  \angle{POQ} =  \dfrac{x}{2}  \\  \\  \bf \bullet \:  \:  \:  \angle{ROQ} =  \dfrac{x}{3}

So,

\bf \implies  \angle{POQ} +  \angle{ROQ} = {180}^{\circ}  \\  \\  \\  \bf \implies  \dfrac{x}{2}  +  \dfrac{x}{3}  = {180}^{\circ}  \\  \\  \\ \bf \implies  \dfrac{(x \times 3 )+(x \times 2) }{6}  = {180}^{ \circ} \\  \\  \\  \bf \implies  \dfrac{3x + 2x}{6}  = {180}^{ \circ}  \\  \\  \\ \bf \implies 3x + 2x =  {180}^{ \circ}  \times 6 \\  \\  \\ \bf \implies 5x =  {1080}^{ \circ}  \\  \\  \\ \bf \implies x =  \dfrac{ {1080}^{ \circ} }{5}  \\  \\  \\ \bf \implies x =  {216}^{ \circ}

Hence,

The value of x is 216°.

______________________________

Verification :

Method I :-

By linear pair,

Sum of two angles is 180°.

\bf \implies  \angle{POQ} +  \angle{ROQ} = {180}^{\circ}  \\  \\  \\  \bf \implies  \dfrac{x}{2}  +  \dfrac{x}{3}  = {180}^{\circ} \\  \\

Now, substitute the value of x.

\bf \implies   \bigg(\dfrac{ \not216}{ \not2}\bigg)^{ \circ} +   \bigg(\dfrac{ \not216}{ \not3}  \bigg)^{ \circ}  =  {180}^{ \circ}  \\  \\  \\ \bf \implies  {108}^{ \circ}  +  {72}^{ \circ}  =  {180}^{ \circ}  \\  \\  \\ \bf \implies  {180}^{ \circ}  =  {180}^{ \circ}

Hence Verified !

______________

Method II :-

By linear pair,

Sum of two angles is 180°.

\bf \implies  \angle{POQ} +  \angle{ROQ} = {180}^{\circ}  \\  \\  \\  \bf \implies  \dfrac{x}{2}  +  \dfrac{x}{3}  = {180}^{\circ} \\  \\

Now substitute the value of x and after substitute the value of x, we can take L.C.M. (least common multiple) of the numerator and solve it.

\bf \implies   \bigg(\dfrac{216}{2}\bigg)^{ \circ} +   \bigg(\dfrac{216}{3}  \bigg)^{ \circ}  =  {180}^{ \circ} \\  \\  \\ \bf \implies {\bigg( \dfrac{(216 \times 3)(216 \times 2)}{6}\bigg)}^{ \circ } =  {180}^{ \circ}  \\  \\  \\ \bf \implies { \bigg(\dfrac{648 + 432}{6}\bigg)}^{ \circ}  =  {180}^{ \circ}  \\  \\  \\ \bf \implies{\bigg(\dfrac{1080}{6}\bigg)}^{ \circ}  =  {180}^{ \circ} \\  \\  \\ \bf \implies  {180}^{ \circ}  =  {180}^{ \circ}

Hence Verified !

Similar questions