in the figure, BC = 7 and BD = 3 then write the ratio of A(triangleADC):A(triangle ABC)
Answers
Step-by-step explanation:
construction , AM perpendicular to BC
hope this helps you
Given:
BC = 7cm
BD = 3cm
To Find:
the ratio of triangle A(triangle ADC): A(triangle ABC)
Solution:
In Δ ABC
To find the measure of DC we will subtract BD from BC and the measurements of BC and BD are given.
DC = BC-BD
= 7 - 3 [the measurement of BC and BD is given]
= 4cm
∴ DC = 4cm
Now, constructing AM⊥BC
The formula to find the area of a triangle is 1/2×base×height
Area of ΔADC = 1/2×DC×AM
= 1/2×4×AM [substituting the value of DC]
= 2AM
Area of ΔABC = 1/2×BC×AM
= 1/2×7×AM[substituting the value of BC(given)]
= 7AM/2
So, the ratio of ΔADC:ΔABC,
= 4/7AM
= 4:7
Therefore, the ratio of the area(ΔADC): area(ΔABC) is 4:7.