In the figure, BED = BDE and E divides BC in the ratio 2 : 1. Prove that AF x BE = 2 AD
CF.
m
Attachments:
Answers
Answered by
12
Step-by-step explanation:
Through C draw CG || FD.
Now, In △AFD,
CG || FD
⇒ AC = AG ............[BPT]
CF GD
⇒ AC + 1 = AG + 1
CF GD
⇒ AC + CF = AG + GD
CF GD
⇒ AF = AD ------ ( 1 )
CF GD
In △BCG,
Since, DE || GC, then
⇒ BE = BD ...........[BPT]
EC GD
⇒ 2 = BD ..........[ As, BE:EC=2:1 ]
1 GD
⇒ BD = 2GD ----- ( 2 )
In △BDE,
⇒ ∠BED = ∠BDE ...........[ Given ]
⇒ BD = BE ...........[Sides opposite to equal angles are equal] ----- ( 3 )
From ( 2 ) and ( 3 ), we get
⇒ 2GD = BE
⇒ GD = BE ----- ( 4 )
2
Substituting the value of GD from ( 4 ) in ( 1 ), we get
⇒ AF = AD
CF BE
2
⇒ AF = 2AD
CF BE
⇒ AF × BE = 2AD × CF
HENCE PROVED!!!
Similar questions