Math, asked by taramusic1996, 1 month ago

In the figure below O is the centre , m(arcPYR)=160 ,mQPR is not equal to 70
find 1)m(arcQXR) 2)/QOR ,3)/PQR

Answers

Answered by ᎷᎪᎠᎪᎡᎪ
11

Answer:

f′(x)f′(x) gives you the slope of ff in x

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=0

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write that

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write thatf′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write thatf′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1

f′(x)f′(x) gives you the slope of ff in xQuite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write thatf′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1If x<−1

Similar questions