In the figure BO and CO are angle bisectors show that angle BOC =90+ 1/2 angle A
Attachments:
Answers
Answered by
5
Answer:
BO and CO are angle bisector of angle B and angle C respectively
Then,
Angle B = angle OBC + angle OBA
(where angle OBC = angle OBA)
Then,
Angle B = 2 angle OBC
Angle C = angle OCB + angle OCA
(where angle OCB = angle OCA)
Then,
Angle C = 2 angle OCB
In triangle ABC,
Angle A + angle B + angle C = 180
Angle A + 2 angle OBC + 2 angle OCB = 180
2(angle OBC + angle OCB) =180 - angle A
Angle OBC + angle OCB = (180 - angle A) /2
Angle OBC + angle OCB = 90 - 1/2 angle A
In triangle BOC,
Angle OBC + angle OCB + angle BOC = 180
90 - 1/2 angle A + angle BOC = 180
Angle BOC = 180 - 90 + 1/2 angle A
Angle BOC = 90 + 1/2 angle A
Hence proved
Similar questions
Math,
5 months ago
Chemistry,
5 months ago
Math,
5 months ago
English,
10 months ago
Social Sciences,
10 months ago
Computer Science,
1 year ago
Physics,
1 year ago