Math, asked by s02371joshuaprince47, 1 month ago

In the figure , DE ∣∣ BC . If ar ( D B C E ) / ar ( △ A B C ) = 16 / 25 x and BC = 8 . 5 cm , find DE ?

Answers

Answered by queen12441
0

Answer:

Given

ΔABC in which DE ∥BC and DE=4cm, BC=8cm. and ar. (ΔADE)=25sq.cm.

In ΔADE and ΔABC ,

∠A=∠A [Common]

∠ADE=∠ABC [Corresponding angles]

∠AED=∠ACB [Corresponding angles]

∴ΔADE∼ΔABC [AAA similarity]

Since ratio of areas of two similar triangles is equal to ratio of squares on the corresponding sides,

ar(ΔABC)

ar(ΔADE)

=

(BC)

2

(DE)

2

ar(ΔABC)

25

=

(8)

2

(4)

2

=

64

16

=

4

1

Hence, ar(ΔABC)=25×4=100sq.cm

Answered by ItzDinu
3

 \sf  \huge\red{Answer}

 \huge \sf \underline \pink{given}

DE∥BC and BC = 8.5cm.

 \dfrac{Δ FDE}{ΔABC}  =  \dfrac{16}{25}

 \huge \sf \underline \pink{to \: find}

DE

 \huge \sf \underline \pink{solution}

Since, ΔABC ~ ΔFDE

 \dfrac{Δ FDE}{ΔABC }  =  \dfrac{DE^{2} }{ BC ^{2} }

\dfrac{16}{25 }  =  \dfrac{DE ^{2} }{8.5^{2} }

\dfrac{16}{25}   ⬈  \dfrac{DE}{8.5}

 \dfrac{16 \times 8.5 \times 8.5}{25} =  D{E}^{2}

 \dfrac{4 \times 4 \times 8.5 \times 8.5}{5 \times 5}  =  {DE}^{2} ( \dfrac{4 \times 8.5}{5} )^{2}  =  {DE}^{2}

( \dfrac{4 \times  \cancel{8.5}}{ \cancel{5}} )^{ \cancel{2}}  =  {DE}^{ \cancel{2}}

4 \times 1.7  =  {DE}DE = 6.8 \: cm

 \red {\boxed{i \: hope \: its \: helpful}}

Similar questions