Math, asked by srinadh5522, 1 year ago

In the figure, DE || BC, ZA = 30° and 2B = 50°. Find the
values of x,y and z.​

Answers

Answered by aadithyakurup2005
20

Answer:

Solution :

1 ) In ∆ABC,

<A + <B + <C = 180°

[ Angle sum property ]

=> 30° + 50° + z = 180°

=> 80° + z = 180°

=> z = 180° - 80°

=> z = 100°

2 ) In ∆ABC ,

DE // BC ,

BD is a transversal ,

y° = <B = 50° [ corresponding angles ]

3 ) DE // BC , CE is a transversal,..

x = z = 100° [ corresponding angles ]

Therefore ,

x = 100° , y = 50° , z = 100°

Answered by raunakdey3009
6

Answer:

In ∆ABC,

<A + <B + <C = 180°[ Angle sum property ]=> 30° + 50° + z = 180°=> 80° + z = 180°=> z = 180° - 80°=> z = 100°2 )

In ∆ABC ,DE // BC ,BD is a transversal ,y° = <B = 50° [ corresponding angles ]

3 ) DE // BC , CE is a transversal,..x = z = 100° [ corresponding angles ]

Therefore ,x = 100° , y = 50° , z = 100°

Similar questions