In the figure, DE || BC, ZA = 30° and 2B = 50°. Find the
values of x,y and z.
Answers
Answered by
20
Answer:
Solution :
1 ) In ∆ABC,
<A + <B + <C = 180°
[ Angle sum property ]
=> 30° + 50° + z = 180°
=> 80° + z = 180°
=> z = 180° - 80°
=> z = 100°
2 ) In ∆ABC ,
DE // BC ,
BD is a transversal ,
y° = <B = 50° [ corresponding angles ]
3 ) DE // BC , CE is a transversal,..
x = z = 100° [ corresponding angles ]
Therefore ,
x = 100° , y = 50° , z = 100°
Answered by
6
Answer:
In ∆ABC,
<A + <B + <C = 180°[ Angle sum property ]=> 30° + 50° + z = 180°=> 80° + z = 180°=> z = 180° - 80°=> z = 100°2 )
In ∆ABC ,DE // BC ,BD is a transversal ,y° = <B = 50° [ corresponding angles ]
3 ) DE // BC , CE is a transversal,..x = z = 100° [ corresponding angles ]
Therefore ,x = 100° , y = 50° , z = 100°
Similar questions