Math, asked by dharanit720, 4 months ago

In the figure,find the four angles A,B,C,D of the parallelogram ABCD​

Attachments:

Answers

Answered by Yuseong
9

Provided Question

In the figure,find the four angles A,B,C,D of the parallelogram ABCD.

Required Solution

Here,  \rm { \triangle ABC } is forming in the \rm { ||gram ABCD } .

In the  \rm { \triangle ABC } ,we have:–

  • Measurement of the three angle =  \rm { 5x° ,7x° \: and \: 6x° }

We know that sum of the interior angles of the triangle are 180°.So,

 \rm { \longrightarrow 5x° + 7x° + 6x° = 180° }

 \rm { \longrightarrow 18x° = 180° }

 \rm { \longrightarrow x° =\cancel{ \dfrac{ 180° }{18} }}

 \rm { \longrightarrow x° = 10° }

So the angles of the triangle are:–

  •  \rm { 5x° = (5 \times 10)° = 50°}
  •  \rm { 7x° = (7 \times 10)° = 70°}
  •  \rm { 6x° = (6 \times 10)° = 60°}

And,

  •  \rm { \angle CAB = \angle ACD } [ By alternate interior property ]

 \rm { \implies 5x° = \angle ACD }

 \rm { \implies 50° =  \angle ACD }

Therefore,

 \rm { \implies \angle C = \angle ACB + \angle ACD}

 \rm { \implies \angle C = 50° + 60° }

 \rm { \implies \angle C = 110° }

 \boxed { \large \bf \red { \angle C = 110° } }

Also,

  •  \rm { \angle C = \angle A } [ As the opposite angles of a parallelogram are equal ]

 \rm { \implies \angle A = 110° }

 \boxed { \large \bf \red { \angle A = 110° } }

___

 \boxed { \large \bf \red { \angle B = 70° } }

[ Found in the triangle ABC]

  •  \rm { \angle D = \angle B } [ As the opposite angles of a parallelogram are equal ]

 \rm { \implies \angle D = 70° }

 \boxed { \large \bf \red { \angle D =  70° } }

So, done!!

_______________________________

Similar questions