Math, asked by ChrisRog, 1 year ago

In the figure,find the value of DC

Attachments:

Answers

Answered by saltywhitehorse
10

Answer:

Step-by-step explanation:

Given AD=10\text{ m}

Consider

DC = x m and BC = y m

In \Delta ABC \angle ACB=90^\circ\text{ and }\angle ABC=45^\circ

\therefore\frac{AC}{BC}=tan45^\circ\\\\\Rightarrow\frac{AC}{BC}=1\\\\\Rightarrow{AC}={BC}\\\\\Rightarrow10+x}=y

[tex]\Delta DBC[/tex] \angle BCD=90^\circ\text{ and }\angle DBC=\theta

\therefore\frac{BC}{DC}=cot\theta\\\\\Rightarrow\frac{10+x}{x}=cot\theta\\\\\Rightarrow\frac{10}{x}+1=cot\theta\\\\\Rightarrow\frac{10}{x}=cot\theta-1\\\\\Rightarrow{x}=\frac{10}{cot\theta-1}

As per the figure the look like. If consider the theta=30°

then the value of

x=\frac{10}{cot\theta-1}\\\\\Rihgtarrow{x}=\frac{10}{cot30^\circ-1}\\\\\Rihgtarrow{x}=\frac{10}{\sqrt{3}-1}\\\\\Rihgtarrow{x}=\frac{10}{1.73-1}\\\\\Rihgtarrow{x}=\frac{10}{.73}\\\\\Rihgtarrow{x}=13.69

Attachments:
Answered by rk432252
16

Answer:

this answer is wrong

answer is 60m

Similar questions