Math, asked by us6554597, 5 months ago

in the figure given alongside ,find the measure of angle ACD. ​

Attachments:

Answers

Answered by Anonymous
22

 \huge\boxed{\underline{\bf\green{A} \:  \red{N} \: \orange{S} \: \purple{W} \: \blue{E} \: \pink{R}}}

∠ACD = ∠BAC + ∠ABC

∵ Sum of two interior ∠ in ∆ is equal to oppose exterior ∠

∠ACD = 75° + 45°

∠ACD = 120°


Anonymous: nice.!
Anonymous: Well done!!
Answered by Anonymous
9

Given:

 \sf {in \: a \triangle  \:abc \:  \angle \: a \:  = 75 \: and \:  \angle \: b = 45}

To Find:

measure of angle ACD

solution

   \sf\: now\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \tt\angle \: c = 180 - (75 + 45) angle \: sum \: property \\  \\ \tt \angle \: c = 180 - 120 = 60 \degree\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \tt \angle \: acd = 180 - 60(linear \: pair)\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \tt  \red{\angle \: acd = 120 \degree}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:

hope this helps.!!

Similar questions