Math, asked by tehreemnigar5, 6 months ago

in the figure given below, AC and BD are two perpendicular diameters of a circle with centre O. If AC= 16 cm, calculate the area and perimeter of the shaded region (take pi= 3.14)​

Attachments:

Answers

Answered by smruti468
10

Answer:

Given radius of circle is 8cm

Ar. Of shaded part

= πr + 4r

= 3.14 × 8 + 4 × 8

= 25.12 + 32

= 57.12 cm

Hope it will be helpful for you

And Follow me

BTS Army forever ❤️

Answered by prince5132
42

GIVEN :-

  • Diameter of Circle , d = 16 cm.

TO FIND :-

  • The area of the shaded region.
  • Perimeter of the shaded region.

SOLUTION :-

 \\ : \implies \displaystyle \sf \: Radius  =  \frac{d}{2}  \\  \\  \\

 : \implies \displaystyle \sf \: Radius  =  \frac{16}{2}  \\  \\  \\

 : \implies  \underline{ \boxed{\displaystyle \sf \: Radius  = 8 \: cm.}} \\  \\

____________________…

 \\  \\

 : \implies \displaystyle \sf \: Area  \: of  \: shaded \:  region = 2 \times  \frac{1}{4} \pi r ^{2}  \\  \\  \\

 : \implies \displaystyle \sf \: Area  \: of  \: shaded \:  region =  \frac{1}{2}  \times 3.14 \times (8) ^{2}  \\  \\  \\

 : \implies \displaystyle \sf \: Area  \: of  \: shaded \:  region =  \frac{1}{2}  \times 3.14 \times 8 \times 8 \\  \\  \\

 : \implies \displaystyle \sf \: Area  \: of  \: shaded \:  region = 3.14 \times 4 \times 8 \\  \\  \\

 : \implies \underline{ \boxed{ \displaystyle \sf \: Area  \: of  \: shaded \:  region = 100.48 \: cm ^{2}  }}\\  \\

____________________…

 \\  \\   \dashrightarrow \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region = 2 \bigg( \frac{1}{4}  \times 2\pi r + 2r \bigg) \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region =  2 \bigg( \frac{1}{2}  \times \pi r + 2 r  \bigg)\\  \\  \\

\dashrightarrow \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region =  2 \bigg( \frac{1}{2}  \times 3.14 \times 8 + 2 \times 8 \bigg) \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region = 2 \bigg( 3.14 \times 4+ 16 \bigg) \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region =  2 \bigg(12.56 + 16 \bigg) \\  \\  \\

\dashrightarrow \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region =  2 \times 28.56 \\  \\  \\

\dashrightarrow \underline{ \boxed{ \displaystyle \sf \:  Perimeter\: of  \: shaded \:  region =  57.12 \: cm}} \\

Attachments:
Similar questions